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Electricity load description

French electricity load (Réseau et Transport d’Électricité) from
January 1st 2012 to June 7th 2020 (half-hour period).
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Dependence to temperature

French temperature (MétéoFrance) : 32 cities every 3h.
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Generalized Additive Model

For each time of day (half-hour) we model the load as

yt = f1(X 1
t ) + ...+ fd(X d

t ) + εt ,

fj(x) =

mj∑
k=1

βj ,kBj ,k(x) .

The different variables are

I Calendar variables (day of the week, time of year),

I Temperature, exponential smoothing variants,

I Lagged load (1 day ago, 1 week ago).



Drift of the model
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State-Space model

Fixed model :

yt =
d∑

j=1

fj(X
j
t ) + εt .

Adaptive model :

yt = θ>t f (Xt) + εt ,

θt+1 = θt + ηt ,

(εt), (ηt) : i.i.d. gaussian noises of variances σ2,Q.
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Kalman Filter

We estimate

θ̂t = E[θt | X1, y1, ...,Xt−1, yt−1] ,

Pt = E[(θt − θ̂t)(θt − θ̂t)> | X1, y1, ...,Xt−1, yt−1] .

Then
yt | X1, y1, ...,Xt−1, yt−1 ∼ N (θ̂>t f (Xt), σ

2 + f (Xt)
>Pt f (Xt)).

Theorem (Kalman and Bucy, 1961)

If the data-generating process is the state-space model of
parameters σ2,Q, we have

θ̂t+1 = θ̂t +
Pt f (Xt)

σ2 + f (Xt)>Pt f (Xt)
(yt − θ̂>t f (Xt)) ,

Pt+1 = Pt −
Pt f (Xt)f (Xt)

>Pt

σ2 + f (Xt)>Pt f (Xt)
+ Q .
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The optimization equivalence

It is equivalent to write

Pt|t = Pt −
Pt f (Xt)f (Xt)

>Pt

σ2 + f (Xt)>Pt f (Xt)
,

θ̂t+1 = θ̂t −
Pt|t

σ2

(
∂

∂θ
(yt − θ>f (Xt))2

)∣∣∣
θ̂t
,

Pt+1 = Pt|t + Q .

Thus the Kalman Filter (and the Extended version as well) is a
second-order Stochastic Gradient algorithm on the quadratic loss.



Choice of Q, σ2 by maximizing the likelihood

yt | X1, y1, ...,Xt−1, yt−1 ∼ N (θ̂>t f (Xt), σ
2 + f (Xt)

>Pt f (Xt)) .

The log-likelihood is then

n∑
t=1

(
−1

2
log(2π(σ2 + f (Xt)

>Pt f (Xt)))− 1

2

(yt − θ̂>t f (Xt))2

σ2 + f (Xt)>Pt f (Xt)

)
,

with θ̂t ,Pt depending on θ̂1,P1, σ
2,Q.
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Coefficient evolution at 6 PM
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Static : θt+1 = θt (Q = 0).



Break at COVID lockdown

yt = θ>t f (Xt) + εt ,

θt+1 = θt + ηt ,

(εt), (ηt) : i.i.d. gaussian noises of variances σ2,Q.

I Would it be better to consider Qt ?

I First test : Qt = Q except QT � Q with T the lockdown
beginning. We test QT = P1.



Coefficient evolution at 6 PM
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Work in progress : dynamic variances

We model the variances as dynamic latent variables : σ2
t = f (at)

and Qt = g(bt) (for instance exponential or quadratic function) :

a0 ∼ N (â0, s0) , b0 ∼ N (b̂0,Σ0) ,

at − at−1 ∼ N (0, ρa) , bt − bt−1 ∼ N (0, ρbI ) .

We study the Variational Bayesian approach : we approach the
posterior distribution of θt , at , bt with a simple factorized
distribution.



Summary of the methods

We have described several methods :

I Generalized Additive Model : yt ∼ N (θ>f (Xt), σ
2), θ = 1.

I Static setting : same model with θ learned incrementally.

I Dynamic : yt ∼ N (θ>t f (Xt), σ
2) with θt+1 − θt ∼ N (0,Q).

I Dynamic with break : θt+1 − θt ∼ N (0,Qt) with Qt = Q
except QT � Q.

I Dynamic variances.



Rolling performances at 6 PM
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Aggregate RMSE

Before 03/16 03/16 - 04/15 04/16 - 06/07

Base GAM 1085 MW 2961 MW 1753 MW

Static 1077 MW 2923 MW 1588 MW

Dynamic 979 MW 2351 MW 1002 MW

DynamicBreak - 1902 MW 854 MW



Conclusion

I D. Obst, J. de Vilmarest and Y. Goude : Adaptive Methods
for Short-Term Electricity Load Forecasting During COVID-19
Lockdown in France (IEEE Transactions on Power Systems).

I We applied Kalman Filter to adapt additive models and also
neural networks to win a competition (Day-Ahead Electricity
Demand Forecasting : Post-COVID Paradigm).

I Work in progress : adaptive estimation of σ2
t ,Qt .

J. de Vilmarest and O. Wintenberger : Recursive Estimation
of State-Space Noise Covariance Matrix by Approximate
Variational Bayes (working paper arXiv 2104.10777).
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