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I. Pre-processing
I.1. Data preparation

Granularity. We consider aggregated load with 15-minute intervals.
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I. Pre-processing
I.1. Data preparation

Exogenous variables. We use the humidity and radiation from weather_data and the 

temperature from building_sensor.

Missing values. We use linear interpolation per time of day.
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Meteorological forecasts. We use autoregressive models with different parameters at each

time of day:

𝑧𝑡 =

𝑙

𝛼ℎ(𝑡)
𝑙 𝑧𝑡−𝑙 + 𝜀𝑡 , 0 ≤ ℎ 𝑡 < 96.

Temperature and humidity: last 10 days at the same time of day, along with the last 10 

available values.

Radiation: last 2 days at the same time of day.

I. Pre-processing
I.2. Meteorological forecasts
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I. Pre-processing
I.3. Baselines

We validate during 01-01-2020 / 02-09-2020.

MAE (W) RMSE (W) Metric (W)

Last load 1509 2739 3703

Lag 1 day 1179 2074 2813

Lag 1 week 968 1748 2252

Average of lags 929 1563 2179

Week profile 1330 1635 2616
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II. Statistical methods
II.1. Linear State-Space Model

We first consider a linear model. We optimize the coefficients separately for each of the 96 

different times of day.

𝐿𝑜𝑎𝑑𝑡 = 𝛼1𝑇𝑒𝑚𝑝𝑡 + 𝛼2𝑇𝑒𝑚𝑝𝑠99𝑡 + 𝛼3𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑡 + 𝛼4𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛𝑡

+𝛼5𝐿𝑜𝑎𝑑𝐿𝑎𝑠𝑡𝑡 +

𝑖=1

7

𝛽𝑖𝟙𝐷𝑎𝑦𝑇𝑦𝑝𝑒𝑡=𝑖𝐿𝑜𝑎𝑑𝐷𝑎𝑦𝑡

+

𝑖=1

7

𝛾𝑖𝟙𝐷𝑎𝑦𝑇𝑦𝑝𝑒𝑡=𝑖𝐿𝑜𝑎𝑑𝑊𝑒𝑒𝑘𝑡 +

𝑖=1

7

𝛿𝑖𝟙𝐷𝑎𝑦𝑇𝑦𝑝𝑒𝑡=𝑖 + 𝜀𝑡
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II. Statistical methods
II.1. Linear State-Space Model

We concatenate the covariates of the linear

model into a vector 𝑥𝑡 and we define the

following state-space model:

𝐿𝑜𝑎𝑑𝑡 = 𝜃𝑡
⊤𝑥𝑡 + 𝜀𝑡

𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝑡

𝜀𝑡 , 𝜂𝑡 are gaussian noises of variances 𝜎2, 𝑄.

Then the celebrated Kalman Filter yields

recursive estimation of 𝜃𝑡.
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II. Statistical methods
II.2. Generalized Additive Model

Generalized Additive Models are semi-parametric models that have been applied to predict the 

electricity load at a more aggregated level.

𝐿𝑜𝑎𝑑𝑡 = 𝑠 𝑇𝑒𝑚𝑝𝑡 + 𝛼𝐿𝑜𝑎𝑑𝐿𝑎𝑠𝑡𝑡 +

𝑖=1

7

𝛽𝑖𝟙𝐷𝑎𝑦𝑇𝑦𝑝𝑒𝑡=𝑖𝐿𝑜𝑎𝑑𝐷𝑎𝑦𝑡

+

𝑖=1

7

𝛾𝑖𝟙𝐷𝑎𝑦𝑇𝑦𝑝𝑒𝑡=𝑖𝐿𝑜𝑎𝑑𝑊𝑒𝑒𝑘𝑡 +

𝑖=1

7

𝛿𝑖𝟙𝐷𝑎𝑦𝑇𝑦𝑝𝑒𝑡=𝑖 + 𝜀𝑡

The effect of the temperature is decomposed on a spline basis and the optimisation is realized

by penalized least-squares. See the R package mgcv.



10

II. Statistical methods
II.2. Generalized Additive Model
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II. Statistical methods
II.2. Generalized Additive Model

We obtain an adaptive model thanks to the state-space formulation.

We freeze the GAM effects, transforming the explanatory variables 𝑥𝑡 into a feature vector 𝑓(𝑥𝑡).

𝐿𝑜𝑎𝑑𝑡 = 𝜃𝑡
⊤𝑓(𝑥𝑡) + 𝜀𝑡

𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝑡

Similarly to the linear model we take 𝑄 = 10−4𝐼 (the covariance matrix of 𝜂𝑡).
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III. Forecast

MAE (W) RMSE (W) Metric (W)

Offline linear 721 1292 1761

Kalman linear (𝑄 = 10−4) 693 1263 1681

Offline GAM 710 1246 1733

Kalman GAM (𝑄 = 10−4) 686 1206 1674

Average of both Kalman 681 1222 1656
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III. Forecast

Final forecasts:

- 12AM to 7:45AM: last load available.

- 8AM to 8PM: average of adaptive linear

and GAM.

- 8:15PM to 11:45PM: average of the 

daily and weekly lags.

This decreases the validation metric by 2%.
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IV. Perspectives
IV.1. Other datasets

This forecasting procedure is in the vein of previous works to forecast the load at larger scales

(country, city):

• Obst, D., de Vilmarest, J. and Goude, Y. (2021): Adaptive Methods for Short-Term Electricity

Load Forecasting During COVID-19 Lockdown in France. IEEE Transactions on Power

Systems.

• First place with Y. Goude at Day-Ahead Electricity Demand Forecasting Competition: Post-

Covid Paradigm, hosted by IEEE DataPort.

It would be interesting to look at the building data during covid ?
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IV. Perspectives
IV.2. VIKING: Variational Bayesian Variance Tracking

The choice of the variances in the state-space model is difficult. Here I simply used 𝑄 = 𝑞𝐼. 
Our current work with O. Wintenberger consists in treating the variances as latent variables 

which are estimated jointly with the state:

The inference relies on the Variational Bayes

approach: we estimate the joint posterior

distribution with a factorized one of the form:

The best factorized distribution is obtained

minimizing the Kullback-Leibler divergence.
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IV. Perspectives
IV.3. Metric optimization

Kalman Filters are designed to optimize the quadratic loss and may be seen as stochastic

gradient algorithm on that loss. We used the competition metric only for validation.

There are a few ways to change that:

• Based on the metric, consider one unique model instead of one per 15 minutes,

• Use aggregation of models (not uniform average) with diverse forecasting methods where

the metric is specified.
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Questions ?

Personal website: https://josephdevilmarest.github.io

e-mail: joseph.de_vilmarest@upmc.fr

https://josephdevilmarest.github.io/
mailto:joseph.de_vilmarest@upmc.fr

